The Water JPI: getting involved

Enrique Playán, Water JPI Coordinator, Tallinn April 18 2013

Highlights on the Vision Document

Distilled information obtained through consensus

The vision document

The grand
challenge:
"Achieving
Sustainable Water
Systems for a
Sustainable
Economy in Europe and Abroad"

JPI Objectives

- Involving water end-users for effective RDI results uptake.
- Attaining critical mass of research programmes.
 - Involve at least two-thirds of the public National water RDI investment in Europe.
- Reaching effective, sustainable coordination of European water RDI.
- Harmonising National water RDI agendas in Partner Countries.
- Harmonising National water RDI activities in Partner Countries.
 - Develop a catalogue of jointly programmed activities whose global budget amounts to at least 20 % of the total water RDI budget of partner Programmes.
- Supporting European leadership in science and technology.

Developing a Strategic Agenda

- Research Questions:
 - Maintaining Ecosystem Sustainability
 - Developing safe water systems for the citizens
 - Promoting competitiveness in the water industry
 - Implementing a water-wise bio-based economy
 - Closing the water cycle gap
- Work in progress... currently in the hands of Partners

1. Ecosystem Sustainability

- Respond to pressures leading to :
 - overexploitation and depletion of water resources,
 - pollution,
 - sea water intrusion in groundwater,
 - morphological changes/infrastructures and works
- Risk-management of water-related extreme events, (floods and droughts), critical to climate change adaptation
 - develop indicators, models and innovative methods to deal with uncertainties for the monitoring of threats, risk assessment and early warning

1. Ecosystem Sustainability

 Enabling role of hydrological sciences and related technologies, including ecosystem management, characterization, monitoring or regulations on environmental standards

Ecosystems services

- Part of a management strategy in new multidisciplinary approaches.
- Opportunities to enhance the sustainability and adaptability of the natural environment and biodiversity
- The capacity to perform ecosystem services should be quantified and valued.
- Ecological engineering approaches

– Proven capacity to contribute to ecosystem sustainability.

1. Ecosystem Sustainability

Climate Change Sedime	nt Transport	Catchment Managemen	t
Pressure-Impact Groundwater		Pollutants Bottlene	ecks
Ecosystem Services		Monitoring Manning Risks)
	Bioassessment	IOOIS	
Ecohydrology People-Centered N	Nonitoring Drc	River Continuit	ods
			у
Cyanobacterial blooms Fish Environmental C Acidification	Migration PO	licies on Chemicals	
		Pressures	
Risk Indicators	ng	Rising Groundwat	ter
Risk Indicators Holistic Ex	treme Events	5 Urbanization	
Water	silience Bronwn		
Heavily Modified B	odies	Economic Valuation	

2. Safe Water Systems for Citizens

- Current threats by emerging pollutants including:
 - Pathogens (including antibiotic resistant bacteria and viruses),
 - Cyanotoxins,
 - Nanomaterials...
- Knowledge gaps remain concerning:
 - Environmental behaviour (surface water, treated water, groundwater)
 - Impact on human health: direct consumption, crops, water supply and storage in rural and urban environments...

2. Safe Water Systems for Citizens

- Best practices for minimizing risks associated with water distribution and storage facilities, or natural hazards
 - Need for innovative practices minimizing risks associated with:
 - Water distribution and storage facilities in urban areas
 - Natural hazards (floods and associated risks for citizens' life)
 - For example: improve performance of storm water retention ponds (managing the contaminants) and advanced wastewater treatment (managing the overflows during floods).
- Climate change may locally increase the frequency and intensity of floods and droughts, requiring further efforts on water resources, hydrodynamics, social sciences and geography...

2. Safe Water Systems for Citizens

Natural Hazards

Pathogens

Cynanotoxins

Ageing Urban Systems

Trace Organics

System Rehabilitation Planning

Urban Floods

Antibiotic Resistance

Cosmetics

Emerging Pollutants Nanoparticles

Endocrine disruptors

Perfluorinated Compounds

Storage Facilities Risks

Bio-indicators

Monitoring and Control Systems

Nanomaterials

Bio-assays

Organosilicon compounds

Water Distribution Risks

3. Competitiveness in Water Industry

Market-oriented technological solutions

- Robust, smart and cost-effective technological solutions
- Designing for different water uses
- Water distribution and measurement
- Advanced water treatment for all types of users
- Making water reuse real, safe and cost-effective
- Desalination
- Recovery and revalorization of wastewater sewage and desalination by-products

3. Competitiveness in Water Industry

- Regulatory, governance and management frameworks
 - Water management as part of a green economy
 - Contribute to the sustainability of other sectors: land use, energy and transport.
 - Accommodate policies to new concepts (such as green infrastructure and natural water retention measures...)
 - Multidisciplinary and integrated approaches, through participative, economic approaches coupled with hydrological modelling

3. Competitiveness in Water Industry							
Biofoulii	ng Low-er		rnance ybrid Membrane Systems				
Market	t-Oriented	Reuse	Technological Solutions				
	Eco-Efficiency		Sifting Paradigm				
Coating	Desalination	Distribution	n Regulation				
Storage		cess Intensification	Bottleneck				
Regulatory Real-Time Information Treatment							
	Mineral Recover	су ¹	Renewable Energy Oxidation				
Brine	Purification Lea	Mea	Asurement Management				
Water JPI	Conveyance	5	/ater Technologies Sensor Networks				

4. A Water-Wise Bio-Economy

- Bio-economy: "use of renewable resources from land and sea, and the use of waste to make value added products, such as food, feed, bio-based products and bioenergy"
- Leading to the intensification of agriculture
- More pressure on natural resources to increase the production of food and biomass, more water and more agrochemicals
- Water depletion and pollution applies to both rainfed and irrigated systems

4. A Water-Wise Bio-Economy

Resource efficiency

- Less water consuming crops, Water conservation techniques,
- Irrigation scheduling and technologies
- Advances in hydrological modelling
- Reduction of soil and water pollution
 - On-farm measures... efficient use of inorganic and organic fertilizers
 - Modifying crop rotations and sowing dates,
 - Selecting more pest-resistant crop varieties,
 - Designating buffer strips along water courses.
 - Sustainable chemical consumption patterns through a mix of policy responses
 - Need for better understanding of contaminants transfer within soils and water systems.

4. A Water-Wise Bio-Economy

Water pricing	Agrochemicals	Climate Change	Nitrogen Organic				
	Salinity	Water Re	euse				
Agronomy	Regulations Modeli	3	rigation Efficiency				
R Hydrology	esource Effici		Water Requirements				
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Evaporation	Bio-fuels				
Farmers' Incentives Rainfed		Pesticides					
Awareness Groundwater Protection Biomass Policy Response							
Soil and Water Pollution							
Pharming	Irrigation	Water Fram	ework Directive				
Water	Phosphorous Fertilizers	Micro Irrigation	Bioenergy				

5. Closing the Water Cycle Gap

- Reconciling water supply and demand
- Scarcity may be related to quantity and to quality too!
- New integrated concepts related to:
 - Integrated water management
 - Water re-use, energy,
 - Recovery of valuable substances,
 - Monitoring and control,
 - Decentralized systems,
 - Interaction with natural resources.
- Combination of
 - Technological and environmental research
 - socio-economic research
- Costs and benefits of the different solutions must be systematically assessed.

- Water foot-printing: deepened, practical methods and certifiable systems.

5. Closing the Water Cycle Gap

- Concepts and solutions for drought sensitive areas, such as:
 - Such as Management of Aquifer Recharge
 - Soil-Aquifer Treatment, as part of an integrated strategy
- Socio-economic approaches
 - Participatory approaches bring together different stakeholders, users and water authorities and provide a forum or platform for discussion.
 - Conceived to facilitate dialogue and to identify problems and best alternatives for decision making.
 - Further develop decision support systems (DSS)
 - Water users' behavior (users' acceptance of innovations) water economics and water governance, regarding frameworks, instruments and integrated models.

5. Closing the Water Cycle Gap

Natural Resources

Governance

Groundwater Resources

Sustainability Stakeholders

Technology

Scarcity

Reconcile Supply and Demand

Decision Making

Rural areas

Hydrological Scales

Transparent, acceptable policies

Participatory

Participation

Market instruments

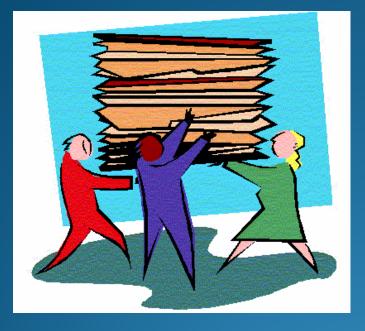
Good Ecological Status **Foot-Printing**

Good Practice

Certification

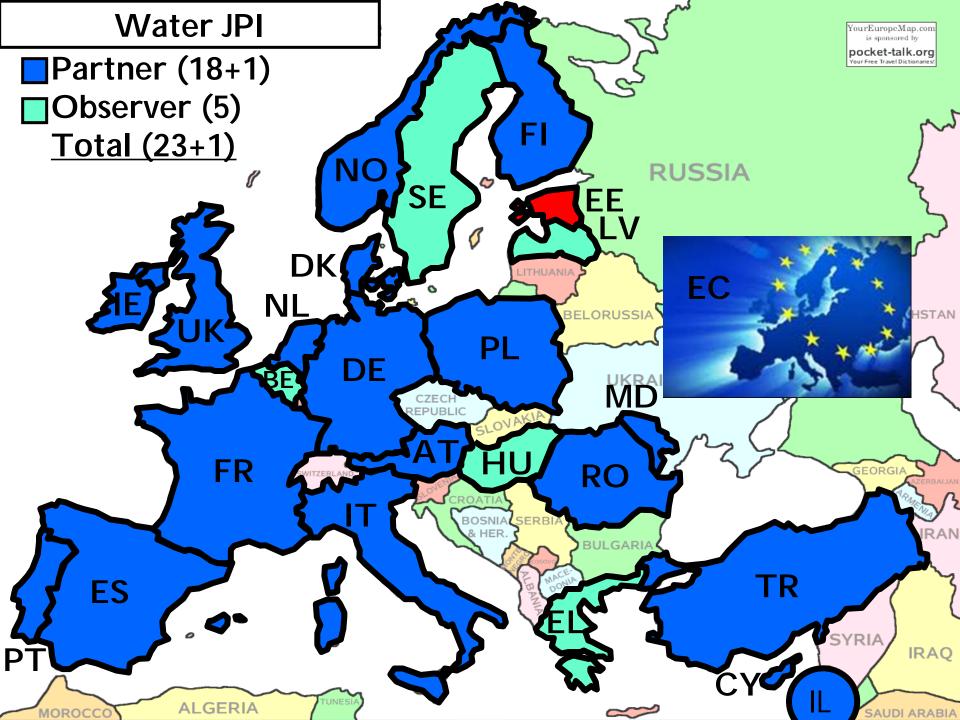
Water Reuse

Management of Aquifer Recharge


Socio-Economy

Decentralized Systems

Integrated Water Resources Management Demonstration Soil-Aquifer Treatment


Closed Systems

Current Water JPI Partners and Observers

A group of committed and motivated research managers

JPI Partners: the Programme Logo Gallery

JPI Partners: the Programme Logo Gallery

<u>Norway</u>

NORWEGIAN DIRECTORATE FOR NATURE MANAGEMENT

The Water JPI in Madrid, Feb. 2012

Funding European Water research and innovation

A few maps to identify a niche for the Water JPI

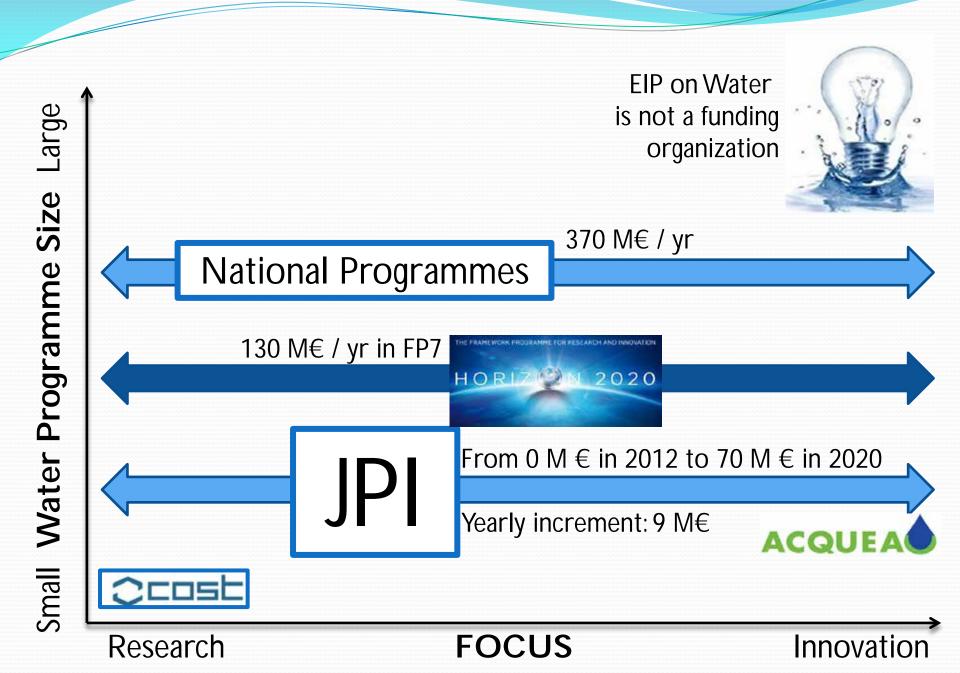
Who is involved in European Water Research and Innovation funding?

- National and Regional Programmes
- Horizon 2020 (FP7)
- -Acqueau (Eureka cluster for water)
- European Innovation Partnership on Water

-COST

-... and the Water JPI

-A few maps will help understand the scene



Research

FOCUS

Innovation

The Water JPI as a funder

- From research to innovation, representing the interests of partner countries
- Finds a specific niche in the transnational funding of researchoriented projects
- This niche is gaining importance with Horizon 2020 increasingly targeting innovation and financing companies
- Will attain a relevant funding size in the coming years, boosted by
 - Cost effectiveness to partner countries
 - Support from H2020 in areas of overlap
- Effective use of variable geometry, capacity to address sub European water challenges
- In addition to funding, coordination of national/regional agendas

Funding the Water JPI

- Till 2012, organizational costs have been covered by in-kind contributions from partner countries
- No fees have been collected or are foreseen
- Since January 2013, executing WatEUr, an FP7 CSA covering organization costs for three years
- Participation in activities is always based on variable geometry

Upcoming activities

Getting quite busy in 2013 and beyond...

2013: Pilot call for proposals

- Will be published in September 2013
- Preliminary discussions permit to advance that this will be an energetic, mobilizing activity.
- Collaborative projects are foreseen
- Governing Board approval in May
- Stay tuned to the Water JPI web site for more information on the Call Topic(s), deadlines and procedures.
- The call will cover the funding expectations (progress towards 2020)

2014: Joint Activities

- Will be published by September 2014
- Will include
 - A call for proposals on collaborative projects for selected topic(s)
 - Additional instruments for specific topics
- Wider mobilization and Scope

Other on-going activities

– Interaction with Horizon 2020:

- Societal challenges, mobility, infrastructure
- Refine Mapping of R&I activities
- Progress towards a Strategic Research and Innovation Agenda
 - First agenda document released in May
 - SRIA 1.0 released in June 2014
- Definition and planning of additional instruments
- Search for strategic Alliances outside Europe
- Strengthen external communication

